The Drosophila tissue polarity gene inturned functions prior to wing hair morphogenesis in the regulation of hair polarity and number.
نویسندگان
چکیده
The adult cuticular wing of Drosophila is covered with an array of distally pointing hairs. Mutations in the inturned (in) gene result in both abnormal hair polarity (i.e., hairs no longer point distally), and, in most cells forming more than one hair. We have isolated and characterized a collection of in alleles. Among this collection of alleles are a number of rearrangements that enable us to assign in to 77B3-5. Almost all of the in alleles, including putative null alleles, result in a stronger phenotype on the wing at 18 degrees than 29 degrees. The data argue that the in-dependent process is cold-sensitive. Temperature shift experiments with a hypomorphic allele show that this cold sensitivity can be relieved by several hours of incubation at the permissive temperature at a variety of times in the early pupae, but that this ability ends prior to the start of hair morphogenesis. One new allele showed a dramatic heat sensitivity. Temperature shift experiments with this allele revealed a very short temperature-sensitive period that is a few hours prior to the start of hair morphogenesis. That the temperature during hair morphogenesis is irrelevant for the phenotype of in is consistent with the hypothesis that the only role that in has in wing hair development is to regulate the initiation of hair morphogenesis.
منابع مشابه
Gene expression during Drosophila wing morphogenesis and differentiation.
The simple cellular composition and array of distally pointing hairs has made the Drosophila wing a favored system for studying planar polarity and the coordination of cellular and tissue level morphogenesis. We carried out a gene expression screen to identify candidate genes that functioned in wing and wing hair morphogenesis. Pupal wing RNA was isolated from tissue prior to, during, and after...
متن کاملThe Drosophila planar polarity proteins inturned and multiple wing hairs interact physically and function together.
The conserved frizzled (fz) pathway regulates planar cell polarity in both vertebrate and invertebrate animals. This pathway has been most intensively studied in the wing of Drosophila, where the proteins encoded by pathway genes all accumulate asymmetrically. Upstream members of the pathway accumulate on the proximal, distal, or both cell edges in the vicinity of the adherens junction. More do...
متن کاملThe Drosophila tissue polarity gene inturned acts cell autonomously and encodes a novel protein.
Mutations in the inturned (in) gene result in abnormal wing hair polarity and in many wing cells forming two or more hairs instead of the normal single hair. We have generated genetic mosaics in a number of different experiments and find that the in gene is required in all regions of the wing and that it functions in a cell autonomous fashion. We report the molecular cloning of the in gene, the...
متن کاملThe multiple-wing-hairs gene encodes a novel GBD-FH3 domain-containing protein that functions both prior to and after wing hair initiation.
The frizzled signaling/signal transduction pathway controls planar cell polarity (PCP) in both vertebrates and invertebrates. Epistasis experiments argue that in the Drosophila epidermis multiple wing hairs (mwh) acts as a downstream component of the pathway. The PCP proteins accumulate asymmetrically in pupal wing cells where they are thought to form distinct protein complexes. One is located ...
متن کاملInturned Localizes to the Proximal Side of Wing Cells under the Instruction of Upstream Planar Polarity Proteins
Planar polarity development in the Drosophila wing is under the control of the frizzled (fz) pathway. Recent work has established that the planar polarity (PP) proteins become localized to either the distal, proximal, or both sides of wing cells. Fz and Dsh distal accumulation is thought to locally activate the cytoskeleton to form a hair . Planar polarity effector (PPE) genes such as inturned ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 137 3 شماره
صفحات -
تاریخ انتشار 1994